# Klinische Anatomie des Gesichtsbereiches des Pferdes in der Magnetresonanztomographie

Kerstin Gerlach, Katharina Flatz<sup>1</sup>, Walter Brehm und Johannes Seeger<sup>2</sup>

Chirurgische Tierklinik und Veterinär-Anatomisches Institut<sup>2</sup> der Universität Leipzig, Chirurgische und Gynäkologische Kleintierklinik der Ludwig-Maximilians-Universität München<sup>1</sup>

#### Zusammenfassung

Ziel dieser Arbeit war die Erstellung eines magnetresonanztomographischen Atlasses klinisch relevanter Strukturen am oberen Gesichtsbereich des Pferdes. Es wurden sechs Köpfe von Pferden in transversalen, dorsalen und sagittalen Schnitten mittels eines Hochfeld-Magnetresonanztomographen (Magnetom Symphony, Siemens, Erlangen) untersucht. Relevante Strukturen wurden mit anatomischen Atlanten, Kopfpräparaten, vorhergehenden Veröffentlichungen und vorliegenden weiteren MRT-Untersuchungen verglichen und beschriftet. Diese Veröffentlichung soll dem klinisch tätigen Tierarzt ein Hilfsmittel zum Verständnis und zur Beurteilung von MRT Bildern und Veränderungen im Kopfbereich des Pferdes liefern.

Schlüsselwörter: MRT, Kopf, Pferd, Anatomie, Nasennebenhöhlen, bildgebende Diagnostik, Magnetresonanztomographie

#### Clinical anatomy of the splanchnocranium region of the equine using magnetic resonance imaging

The purpose of this study was to produce a magnetic resonance image atlas of clinically relevant structures of the splanchnocranium of horses. The heads of six horses were imaged in transverse, sagittal and dorsal planes, using a high field unit (Magnetom Symphony, Siemens, Erlangen). Relevant anatomic structures were identified and labelled using anatomic atlases, sectioned cadaver heads, previously published articles and other MRI examinations. This article should help the clinician to better understand and identify MR Images and changes of the equine head.

Keywords: MRI, head, horse, anatomy, paranasal sinuses, imaging techniques

#### Einleitung

Die magnetresonanztomographische Untersuchung des Pferdekopfes hat in den letzten Jahren an Bedeutung zugenommen (Audigie et al. 2004, Chaffin et al. 1997, Ferrell et al. 2002, Gerlach et al. 2004, 2006, 2007, Gerlach und Gerhards 2008, Junker et al. 2002, Matiasek et al. 2007, Tucker et al. 2001, Wollanke et al. 2006). Durch die weiterentwikkelte Technik ist es möglich, jedem Patienten die Untersuchungsergebnisse in elektronischer Form auszuhändigen. Dem überweisenden Tierarzt wird damit ein wichtiges Hilfsmittel für die Operationsplanung und Behandlung zur Verfügung gestellt. Allerdings ist meist nur der Spezialist in der Lage, sich anatomisch schnell und sicher zu orientieren. Anatomische Beschreibungen des Kopfbereiches des Pferdes im MRT existieren nur im englischsprachigen Schrifttum (Arenciba et al. 2000,2001, Chaffin et al. 1997). Ziel dieser Arbeit war eine kurze anatomische Übersicht klinisch wichtiger Bereiche des oberen Gesichtsschädels und einiger weniger Abschnitte des Neurokraniums des Pferdes in der magnetresonanztomographischen Darstellung.

#### Tiere und Methoden

Repräsentative magnetresonanztomographische Bilder von sechs Pferden aus insgesamt 40 untersuchten Patienten wurden ausgewählt. Keines der Pferde wies auf den verwendeten Bildern Veränderungen im Nasen- bzw. Oberkieferbereich auf. Drei Pferde (Nr. 1, 2 und 6) wurden aufgrund verschiedener Befunde vor der Untersuchung euthanasiert. Die Untersuchungen fanden unmittelbar nach Euthanasie und Absetzen der Köpfe bzw. Hälse statt. Die anderen Pferde befanden sich während der Bilderstellung in einer Inhalationsnarkose. Die Untersuchungen erfolgten in der Klinik für Pferde der LMU München mit einem Magnetom Symphony der Firma Siemens (1,5 Tesla) sowie der Spine bzw. Wirbelsäulenspule und einer "CP Body Array Extender". Routinemäßig wurden transversale, sagittale und koronare Schnitte sowie teilweise fettunterdrückte Sequenzen als Spinechos und Gradientenechos angefertigt. Dabei wurden T1-gewichtete (T1w), T2-gewichtete (T2w) und T2stir (Short-Tau-inversion-recovery) Bilder gewonnen. Die STIR-Technik dient der Unterdrückung des "Fettsignals".

Einheitlich ist mit einer Matrix von 256\*256, einem FOV3-400 und einer Schichtdicke von 5 mm gearbeitet worden. Die Bilder wurden als DICOM abgespeichert und weiterverarbeitet. Transversale Schnitte orientierten sich jeweils im rechten Winkel zum harten Gaumen und die dorsalen möglichst parallel dazu. Für die sagittalen wurde die Nasenscheidewand als parallele Orientierung der angelegten Schnitte gewählt.

Folgende Pferde wurden in die Studie einbezogen:

- WB Wallach, 16 Jahre, Euthanasie wegen Kolik (Abb. 10)
- Quarter Horse Stute, zehn Jahre, Euthanasie wegen Fraktur (Abb. 6, 7 und 11)

- Arab. VB Stute, 15 Jahre, Neuritis des N. trigeminus (Abb. 8 und 9)
- WB Wallach, zehn Jahre, Abszess ventrale Nasenmuschelhöhle (Abb. 1 und 12)
- Pony Stute, neun Jahre, Oberkieferfraktur mit Fistel (Abb. 13)
- WB Wallach, 16 Jahre, Euthanasie wegen Kolik (Abb. 3, 4, 5).

Als Referenzen für die Bestimmung der anatomischen Strukturen dienten Anatomiebücher und Veröffentlichungen (*Budras* und *Röck* 2000, *Popesko* 1989, *König* et al. 2002, *Nickel* et al. 2004). Die Bezeichnungen erfolgten nach Illustrated Veterinary Anatomical Nomenclature (*Schaller* 2007).

### Ergebnisse

Zum besseren Überblick wurde mit einer sagittalen Darstellung des Kopfes begonnen (Abb. 1). In dieses Bild wurden in die Abb. 2 die Referenzlinien für die transversalen Schnitte



**Abb 1** Sagittalschnitt in T2w (TR 6560, TE 114) eines 10-jährigen WB- Wallachs. Links ist rostral, dorsal ist oben. Die Legende befindet sich in Tab.2.

Sagittal T2w (TR 6560, TE 114) MR image of a 10 years old Warmblood gelding. Rostral is to the left and dorsal is to the top of the image. Labels are indexed in table 2.



**Abb 2** Sagittalschnitt wie Abb. 1 mit Abbildung der Referenzlinien für die Transversalschnitte und den Dorsalschnitt in Abb. 13. Sagittal T2w MR image from Fig 1 of a 10years old Warmblood gelding. Lines depict the transverse imaging planes and the dorsal imaging plane in Fig. 13.

(Abb. 3-11) eingezeichnet. Als zweite sagittale Darstellung in T2w wurde Abb. 12 eingefügt, da hier die Nasenmuscheln mit den Nasengängen gut zu identifizieren sind. Abb. 13 stellt einen dorsalen Schnitt dar, welcher eine gute Darstellung der Augen, des Siebbeines und des Nasenbereiches gewährleis-



Abb 3 Transversalschnitt in T1w (TR 552, TE 1) eines 16-jährigen WB-Wallachs in Höhe der ersten Oberkieferbackenzähne P2 (06). Links entspricht der rechten Seite des Pferdes. Die Legenden befinden sich in Tab. 1.

Transversal T1w (TR 552, TE 1) MR image of a 16 years old Warmblood gelding at level of P2 (06). Right is to the left of the image. See figure 2 for exact slice location. Labels are indexed in table 1



Abb 4 Transversalschnitt in T1w (TR 552, TE 1) eines 16-jährigen WB-Wallachs in Höhe der zweiten Oberkieferbackenzähne P3 (07). Links entspricht der rechten Seite des Pferdes. Die Legenden befinden sich in Tab. 1.

Transversal T1w (TR 552, TE 1) MR image of a 16 years old Warmblood gelding at level of P3 (07). Right is to the left of the image. See figure 2 for exact slice location. Labels are indexed in table 1. tet. Die Referenzlinie dazu ist in Abb. 10 eingezeichnet. Die Legenden der Abbildungen 3-5 werden in Tabelle 1 wiedergegeben, die der Abbildungen 1 und 6 bis 13 in Tabelle 2. Zähne werden nach dem Triadan-System benannt (*Floyd* 1991).

## Diskussion

Die Bilder in T1w und T2w weisen ausreichend guten Kontrast und Auflösung für die Identifikation relevanter anatomischer Strukturen auf. Für die transversalen Bilder wurden T1w Aufnahmen bevorzugt, da diese Wichtung die feineren anatomischen Details am besten wiedergibt (Arencibia 2000, Ehlert 2006, Mair et al. 2005, Busoni et al. 2004). T2w Bilder sollen sich besser für die Darstellung pathologischer Veränderungen eignen (Mair et al. 2005), werden aber auch für neuroanatomische Strukturen bevorzugt (Leigh et al. 2008). Für die Darstellung des Kehlkopfbereiches gibt Pekarkowa (2008) ebenfalls die transversale T1w, aber auch transversale und sagittale T2w als nützlich an. Aus diesem Grund wurden auch T2w Bilder als Vergleichsbilder herangezogen. In einigen Bereichen konnte dabei eine deutlichere Abgrenzung und damit ein besseres Verständnis erreicht werden.

Für die vorliegende Arbeit ist als letzte anatomische Landmarke das Kiefergelenk ausgewählt worden. In diesem Bereich sind kraniale Hirnstrukturen bereits sichtbar, der Luft-



Abb 5 Transversalschnitt in T1w (TR 552, TE 1) eines 16-jährigen WB-Wallachs in Höhe der dritten Oberkieferbackenzähne P4 (08). Der Schnitt ist nicht gleichmäßig, so dass auf der rechten Seite Anteile der rostralen Kieferhöhle dargestellt sind. Etwas Blut hat sich angesammelt und ist als Spiegel erkennbar (Pfeil). Der Kopf befand sich in linker Seitenlage. Links entspricht der rechten Seite des Pferdes. Die Legenden befinden sich in Tab. 1.

Transversal T1w (TR 552, TE 1) MR image of a 16 years old Warmblood gelding at level of P4 (08). The level isn't consistent, on the left is more rostral maxillary sinus visible, inside is some blood with air fluid level (arrow). The horse was positioned in left lateral recumbency. Right is to the left of the image. See figure 2 for exact slice location. Labels are indexed in table 1.



Abb 6 Transversalschnitt in T1w (TR 875, TE 9,3) einer 10-jährigen Quarter Horse Stute in Höhe der Oberkieferbackenzähne M1 (09). Links entspricht der rechten Seite des Pferdes. Die Legenden befinden sich in Tab. 2.

Transversal T1w (TR 875, TE 9,3) MR image of a 10 years old Quarter Horse mare at level of M1 (09). Right is to the left of the image. See figure 2 for exact slice location. Labels are indexed in table 2.



Abb 7 Transversalschnitt in T1w (TR 875, TE 9,3) einer 10-jährigen Quarter Horse Stute in Höhe der Oberkieferbackenzähne M2 (10). Links entspricht der rechten Seite des Pferdes. Die Legenden befinden sich in Tab. 2.

Transversal T1w (TR 875, TE 9,3) MR image of a 10 years old Quarter Horse mare at level of M2 (10). Right is to the left of the image. See figure 2 for exact slice location. Labels are indexed in table 2. Weiterhin wurde im kaudalen Bereich des Kopfes auf ventrale Abschnitte zugunsten der uns klinisch wichtiger erscheinenden dorsalen Bereiche mit den Nasennebenhöhlen und Hirnstrukturen verzichtet. Leichte Abweichungen der Schnittebenen können von Patient zu Patient auftreten.

In der MRT als bildgebendem Verfahren werden nur indirekte Darstellungen geliefert. Es werden Verteilung und Bindungszustand der Wasserstoffprotonen abgebildet (*Lemke* und *Steiner* 1999). Damit erscheinen in beiden dargestellten Wich-



Abb 8 Transversalschnitt in T1w (TR 766, TE 9,3) einer 15-jährigen Arabischen VB-Stute in Höhe M3 (11). Die letzten Backenzähne sind aufgrund ihrer schrägen Lage nur kurz angeschnitten. Das Pferd befand sich in Narkose, die Form des Tubus zwischen Gaumen und Zunge ist erkennbar. Weiterhin erscheint der Venenplexus gestaut. Links entspricht der rechten Seite des Pferdes. Die Legenden befinden sich in Tab. 2.

Transversal T1w (TR 766, TE 9,3) MR image of a 15 years old Arabian mare at level of M3 (11). The last molars are oblique sliced. The horse was under anaesthetic, the tube is seen as a well circumscript area between tongue and palate. The blood is accumulated in the venous plexus. Right is to the left of the image. See figure 2 for exact slice location. Labels are indexed in table 2. tungen Luft, die Zahnhartsubstanzen und kortikaler Knochen signallos. Ebenso imponiert in beiden Wichtungen Fett gleichmäßig signalreich, welches am Pferdekopf retrobulbär, extraperiorbital und im spongiösen Knochen am Unter- und Oberkiefer sowie dessen Os basisphenoidale eine gewisse Bedeutung in der Befundung des MRT Bildes aufweist. Ein deutlicher Unterschied zwischen beiden Wichtungen besteht in der Darstellung von Flüssigkeit. In den Blutgefäßen (unter Beachtung der Flussartefakte) und in den synovialen Strukturen kommt sie signalreich zur Geltung, damit hell in T2w und dunkel in



**Abb 9** Transversalschnitt einer fettunterdrückten Aufnahme T2stir (TR 7940, TE 70) kurz hinter M3 (11) in) einer 10-jährigen Quarter Horse-Stute. Die letzten Backenzähne sind aufgrund ihrer schrägen Lage nur kurz angeschnitten. Fett um den Augapfel und im Unterkiefer erscheint auf diesem Bild im Gegensatz zu den anderen Sequenzen grau. Links entspricht der rechten Seite des Pferdes. Die Legenden befinden sich in Tab. 1.

Transversal T2 stir (TR 7940, TE 70) MR image of a 10 years old Quarter Horse mare at level behind M3 (11). The last molars are oblique sliced shortly. Fat around bulb and in the spongy bone appears now grey opposite to the bright fat in other sequences. Right is to the left of the image. See figure 2 for exact slice location. Labels are indexed in table 2. T1w. Allerdings erscheint fließendes Blut in Spinechosequenzen und Gradientenechosequenzen unterschiedlich (*Vogl* und *Diebold* 1999) und ist damit nicht zuverlässig definierbar. In den Bildern konnten jedoch eindeutig die benannten Blutgefäße zugeordnet werden. Alle anderen Strukturen variieren in unterschiedlichen Grautönen hyper- und hypointens. Der Vergleich von isointensen Strukturen im physiologischen Zustand erfolgte in dieser Arbeit immer im Vergleich zur in beiden Wichtungen isointens erscheinenden Muskulatur. Bei der Beschriftung der Zähne wurde am jeweiligen ersten Backen-



Abb 10 Transversalschnitt in T1w (TR 552, TE 17) eines 16 jährigen WB-Wallachs in Höhe des Siebbeines. Das Bild erscheint aufgrund einer ungünstigen Spulenwahl nicht gleichmäßig. Das Pferd befindet sich in linker Seitenlage, in rechter Stirn- und Keilbeinhöhle befinden sich Blutansammlungen. Die horizontale Linie repräsentiert die Schnitthöhe von Abb. 13. Links entspricht der rechten Seite des Pferdes. Die Legenden befinden sich in Tab. 1.

Ttransversal T1w (TR 552, TE 17) MR image of a 16 years old Warmblood gelding at ethmoid level. The image doesn't appear homogenous because of an inadequate spoil choose. The horse is in a left lateral recumbency, in frontal and sphenoid sinuses is some blood with air fluid level. Right is to the left of the image. See figure 2 for exact slice location. Labels are indexed in table 2. The horizontal line represents the location of figure 13.

zahn begonnen. Sie sind nach dem Zahnschema nach Triadan benannt, der erste Backenzahn (der 2. Prämolare) wurde dabei jeweils mit 06 bezeichnet. Jedem Quadranten wird eine Nummer zugeordnet, beginnend oben rechts bis unten rechts (*Floyd* 1991).

In der Abbildung der ersten Backenzähne (Abb. 3) dominieren auf dem T1w Bild die Fetteinlagerungen der Spongiosa des Ober- und Unterkiefers. Die Zähne links sind aufgrund der nach unten gelagerten Zunge gut als eine Art "Füllungsdefekte" dargestellt. Die rechten Backenzähne grenzen sich nach drei Seiten gut ab, schlecht zur Luft in der Maulhöhle. Die kortikale Abgrenzung in Form einer kräftigen dunklen Linie um die Spongiosa am Unterkiefer und einer zarteren am Oberkiefer ist gut nachvollziehbar. Die Nasenmuscheln sind von Schleimhaut überzogen, die eine Dicke von bis zu 6 mm ausmachen kann (*Probst* et al. 2005). Kräftige Venenpolster kommen vor allem im ventralen Nasengang vor (*Olson* 1987). Am ventralen Rand des Nasenseptums kommt ein großer Schwellkörper vor, der sich in das Lumen des gemeinsamen Nasenganges vorstülpt (*Tremaine* und *Dixon* 2002). Die Bezeichnung des Sulcus conchae dorsalis ist nach *Nöller* et al. (2007) erfolgt und stellt sich in den dort vorgestellten CT Bildern ähnlich wie im MRT dar. Auch die von *Nöller* et al. (2007) verwendeten Termini hinsichtlich der Konchen erschienen sinnvoll, waren im MRT darstellbar und wurden deshalb übernommen.



**Abb 11** Transversalschnitt in T1w (TR 875, TE 9,3) einer 10-jährigen Quarter Horse Stute in Höhe der Kiefergelenke. Links entspricht der rechten Seite des Pferdes. Die Legenden befinden sich in Tab. 1. Transversal T1w (TR 875, TE 9,3) MR image of a 10 years old Quarter Horse mare at level of temporomandibular joint. Right is to the left of the image. See figure 2 for exact slice location. Labels are indexed in table 2.

Nach kaudal (Abb. 4-6) verringerte sich der bis dahin im Bild dominante spongiöse Anteil im Oberkiefer und wurde durch die luftgefüllten signallosen Bereiche der Kieferhöhle ersetzt. In Höhe der M1 (109 und 209) (Abb. 6) war der Canalis infraorbitalis als gute Leitstruktur beim adulten Pferd (in diesem Fall zehn Jahre) in der Kieferhöhle zu erkennen und ließ sich auch über den letzten Backenzähnen gut erkennen (Abb. 7-8).

Die Apertura nasomaxillaris befand sich bei Untersuchungen von *Probst* et al. (2005) in Höhe der 11, nach *Nöller* et al. (2007) am vierten Prämolaren und war bei uns in den Abb. 6 und 7 in Höhe der Zähne 09 und 10 gut zu erkennen. Ebenso die große Öffnung der ventralen Nasenmuschelhöhle in die Kieferhöhle (Apertura conchomaxillaris).

Weiter kaudal dominiert der M. masseter das Bild, im Oberkiefer sind nur durch eine dünne physiologische Schleimhautauskleidung die zarten Knochenstrukturen der Nase und deren Nebenhöhlen zu erkennen (Abb. 8).

Auf Abb. 9 erscheinen beide Augen und das Siebbein gleichzeitig als Landmarken im Bild. Die lufthaltigen Bereiche reduzieren sich auf den Atmungsrachen, den kleinen Sinus sphenopalatinus und die Stirnhöhle. Die große frontomaxilläre Öffnung, nach *Probst* et al. (2005) bis zu 5 cm lang, ist gut abgebildet. Erste Anteile eines extraperiorbitalen Fettkörpers beginnen sich in der Schläfengrube darzustellen. Er beinhaltet in der Fossa pterygopalatina große Blutgefäße und wichtige Nerven (Abb. 10). Als dominantestes Blutgefäß erscheint die Vena faciei profunda, weiterhin der N. infraorbitalis als Orientierungsstruktur. In diesem Bereich sind ebenfalls die A. maxillaris und ihre Abzweigungen, die A. infraorbitalis, palatina und buccalis enthalten (*Staszyk* et al.



**Abb 12** Parasagittale Abbildung in T2w (TR 6560, TE 114) eines 10-jährigen WB-Wallachs. Besonders gut sind dorsale und ventrale Nasenmuschel, der Sinus des medialen sowie die drei Nasengänge zu erkennen. Links entspricht rostral. Die Legenden befinden sich in Tab. 2.

Parasagittal T2w (TR 6560, TE 114) MR image of a 10 years old Warmblood gelding. Rostral is to the left and dorsal is to the top of the image. Label are indexed in table 2.

2008). Diese Gefäße lassen sich nicht sicher abgrenzen. Blutgefäße bilden sich in Spinechosequenzen aufgrund des Fließens des Spins aus der Bildebene signalarm ab (*Vogl* and *Diebold* 1999). Die beiden luftführenden Abschnitte zwischen Auge und unterhalb des Siebbeines werden als Öffnung zum Sinus sphenopalatinus bezeichnet (*Probst* et al. 2005). In der unteren Kopfhälfte stellen sich hauptsächlich Muskeln um die Unterkieferäste dar und lassen sich im Kehlkopfbereich schwer differenzieren.

Der nächstfolgende Schnitt ist nicht ganz symmetrisch in Höhe der Kiefergelenke angefertigt (Abb. 11), kreuzt beide Luftsäkke schräg und schneidet kranial gelegene Gehirnteile an, welches sich auf T2w gewichteten Aufnahmen besser differenzieren ließ (*Leigh* et al. 2008). In der Mitte des Bildes dorsal der Luftsäcke befindet sich das Os basiphenoidale. Darüber, noch rostral der Wachstumsfuge, wird die Hypophyse leicht hyperintens abgebildet.

Mit dem verwendeten Hochfeldgerät sind Details im Bereich des Gesichtsschädels beim Pferd hervorragend darstellbar. Je nach Größe des Kopfes können nicht immer alle Anteile in einem Bild erfasst werden, FOV und Lage der Schnitte müssen jeweils angepasst werden. In den T1w Bildern stellt sich die Abgrenzung anatomischer Strukturen herausragend dar. Zusätzlich ist für bestimmte Fragestellungen auch die T2w diagnostisch wertvoll. Weiterhin sind fettunterdrückte Wichtungen für Differenzierungen in fetthaltigen Abschnitten von Bedeutung. Für spezielle Fragestellungen hinsichtlich pathologischer Veränderungen sind weitere Wichtungen, Kontrastmittelgaben bzw. auch geeignete Sequenzkombinationen für Informationen über die Zusammensetzung von Geweben erforderlich.

Die Darstellung der physiologischen Befunde in dieser Veröffentlichung soll als Referenz für die Beurteilung von MRT-Bildern und für die Zuordnung pathologischer Prozesse im Gesichtsbereich von Pferden dienen.



**Abb 13** Dorsalschnitt in T2w (TR 10004, TE 99) einer 9-jährigen Ponystute. Die Abbildung ergibt eine gute Übersicht über die Lage der Nasenmuschel, -nebenhöhlen, der Bulben und des dazwischen befindlichen Siebbeinbereiches. Die Höhe des Schnittes wird in Abb. 11 angezeigt. Links entspricht der rechten Seite des Pferdes. Die Legenden befinden sich in Tab. 2.

Coronar T2w (TR 10004, TE 99) MR image of a 9 years old Pony mare at ethmoid level. The image gives a good overview about correlation of nasal, paranasal and conchal sinuses and the ethmoid. Right is to the left of the image. See figure 2 and 11 for exact slice location. Labels are indexed in table 2.

Tab 1Legenden der Abbildungen 3-5Legends of figures 3-5

| 1   | Meatus nasi ventralis, ventral nasal meatus                       |
|-----|-------------------------------------------------------------------|
| 2   | Meatus nasi medius, middle nasal meatus                           |
| 3   | Meatus nasi dorsalis, dorsal nasal meatus                         |
| 4   | Meatus nasi communis, common nasal meatus                         |
| 5   | Sulcus conchae dorsalis, dorsal conchal depression                |
| 6   | Septum nasi, nasal septum                                         |
| 7   | Os nasale. Nasal bone                                             |
| 8   | Maxilla, maxillary bone                                           |
| 9   | Mandibula, mandibular bone                                        |
| 10  | Plexus venosi nasals, nasal venous plexus                         |
| 11  | Sinus maxillaris rostralis, cranial maxillary sinus               |
| 12  | Cartilago septum nasi, nasal septum cartilage                     |
| 13  | Concha nasalis dorsalis mit Recessus, dorsal nasal concha with    |
|     | recessus                                                          |
| 13a | Concha nasalis dorsalis mit Bulla, dorsal nasal concha with bulla |
| 13h | Concha nasalis dorsalis mit Sinus, nasal concha with sinus        |

| 14                                   | Concha nasalis ventralis mit Recessus, ventral nasal concha with                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | recessus                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14a                                  | Concha nasalis ventralis mit Bulla, ventral nasal concha with                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | bulla                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14b                                  | Concha nasalis ventralis mit Sinus, ventral nasal concha with                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | sinus                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14c                                  | Septum conchae nasalis ventralis, ventral nasal conchal septum                                                                                                                                                                                                                                                                                                                                                                               |
| 16                                   | N. infraorbitalis, infraorbital nerve                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17                                   | Palatum durum, soft palate                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A                                    | M. genioglossus, genioglossal muscle                                                                                                                                                                                                                                                                                                                                                                                                         |
| A<br>B                               | M. genioglossus, genioglossal muscle<br>M. hypoglossus, hypoglossal muscle                                                                                                                                                                                                                                                                                                                                                                   |
| A<br>B<br>C                          | M. genioglossus, genioglossal muscle<br>M. hypoglossus, hypoglossal muscle<br>M. geniohyoideus, geniohyoid muscle                                                                                                                                                                                                                                                                                                                            |
| A<br>B<br>C<br>D                     | M. genioglossus, genioglossal muscle<br>M. hypoglossus, hypoglossal muscle<br>M. geniohyoideus, geniohyoid muscle<br>A./V. profunda linguae, deep lingual artery and vein                                                                                                                                                                                                                                                                    |
| A<br>B<br>C<br>D<br>E                | <ul> <li>M. genioglossus, genioglossal muscle</li> <li>M. hypoglossus, hypoglossal muscle</li> <li>M. geniohyoideus, geniohyoid muscle</li> <li>A./V. profunda linguae, deep lingual artery and vein</li> <li>A., V., N. mandibularis, mandibular artey, vein, nerve</li> </ul>                                                                                                                                                              |
| A<br>B<br>C<br>D<br>E<br>F           | <ul> <li>M. genioglossus, genioglossal muscle</li> <li>M. hypoglossus, hypoglossal muscle</li> <li>M. geniohyoideus, geniohyoid muscle</li> <li>A./V. profunda linguae, deep lingual artery and vein</li> <li>A., V., N. mandibularis, mandibular artey, vein, nerve</li> <li>Corpus linguae, lingual corpus</li> </ul>                                                                                                                      |
| A<br>B<br>C<br>D<br>E<br>F<br>G      | <ul> <li>M. genioglossus, genioglossal muscle</li> <li>M. hypoglossus, hypoglossal muscle</li> <li>M. geniohyoideus, geniohyoid muscle</li> <li>A./V. profunda linguae, deep lingual artery and vein</li> <li>A., V., N. mandibularis, mandibular artey, vein, nerve</li> <li>Corpus linguae, lingual corpus</li> <li>M. levator labii superioris, levator labii superioris muscle</li> </ul>                                                |
| A<br>B<br>C<br>D<br>E<br>F<br>G<br>H | <ul> <li>M. genioglossus, genioglossal muscle</li> <li>M. hypoglossus, hypoglossal muscle</li> <li>M. geniohyoideus, geniohyoid muscle</li> <li>A./V. profunda linguae, deep lingual artery and vein</li> <li>A., V., N. mandibularis, mandibular artey, vein, nerve</li> <li>Corpus linguae, lingual corpus</li> <li>M. levator labii superioris, levator labii superioris muscle</li> <li>M. levator nasolabialis</li> </ul>               |
| A<br>B<br>C<br>D<br>E<br>F<br>G<br>H | M. genioglossus, genioglossal muscle         M. hypoglossus, hypoglossal muscle         M. geniohyoideus, geniohyoid muscle         A./V. profunda linguae, deep lingual artery and vein         A., V., N. mandibularis, mandibular artey, vein, nerve         Corpus linguae, lingual corpus         M. levator labii superioris, levator labii superioris muscle         M. levator nasolabialis         M. buccinator, buccinator muscle |

# Tab 2Ziffernlegenden der Abbildungen 1, und 6-13Legends for figures 1 and 6-13

| 1   | Meatus nasi ventralis, ventral nasal meatus                        |
|-----|--------------------------------------------------------------------|
| 2   | Meatus nasi medius, middle nasal meatus                            |
| 3   | Meatus nasi dorsalis, dorsal nasal meatus                          |
| 4   | Meatus nasi communis, common nasal meatus                          |
| 5   | Sinus conchofrontalis, conchofrontal sinus                         |
| 6   | Septum nasi, nasal septum                                          |
| 7   | Os nasale, nasal bone                                              |
| 8   | Maxilla, maxillary bone                                            |
| 9   | Mandibula, mandibular bone                                         |
| 10  | Plexus venosus, venous plexus                                      |
| 11  | Sinus maxillaris rostralis, rostral maxillary sinus                |
| 12  | Pars squamosa ossis temporalis, squamous part of temporal bone     |
| 13  | N. infraorbitalis, infraorbital nerve                              |
| 14  | Ductus nasolacrimalis, nasolacrimal duct                           |
| 15  | Sinus maxillaris, maxillary sinus                                  |
| 15a | Septum sinuum maxillaris, septum of maxillary sinus                |
| 16  | Concha nasalis dorsalis, dorsal nasal concha                       |
| 16a | Concha nasalis dorsalis mit Sinus, dorsal nasal concha with sinus  |
| 16b | Septum der Concha nasalis dorsalis, septum of dorsal nasal         |
|     | concha                                                             |
| 17  | Concha nasalis ventralis, ventral nasal concha                     |
| 17° | Concha nasalis ventralis mit Sinus, ventral nasal concha with      |
|     | sinus                                                              |
| 17b | Concha nasalis media mit Sinus, medial nasal concha with sinus     |
| 18  | Sinus frontalis, frontal sinus                                     |
| 19  | Crista facialis, facial crest                                      |
| 20  | Bulbus, bulb                                                       |
| 21  | Kaudales Ende des Rachenseptums, Vomer bone                        |
| 22  | Atmungsrachen, nasopharynx                                         |
| 23  | Augenmuskeln, ocular muscles                                       |
| 24  | Endoturbinale, ethmoid bone                                        |
| 25  | Os frontale, frontal bone                                          |
| 26  | V. profunda fascei, deep facial vein                               |
| 27  | Palatum molle, soft palate                                         |
| 28  | Os parietale, parietal bone                                        |
| 29  | Processus coronoideus mandibulae, coronoid process of the mandibel |
| 30  | Stylohyoid, stylohyoid bone                                        |

| 31       | Processus zygomaticus ossis temporalis, zygomatic process of the  |
|----------|-------------------------------------------------------------------|
|          | temporal bone                                                     |
| 31a      | Arcus zygomaticus, zygomatic arch                                 |
| 32       | Subarachnoidalraum, subarachnoidal space                          |
| 33       | Processus palatinus maxillae, maxillary palatinal process         |
| 34       | Septum diverticulorum tubae auditivae, septum of guttural pouch   |
| 35       | Tuba auditiva, guttural pouch                                     |
| 36       | Os spenoidale, sphenoidal bone                                    |
| 36a      | Os basiphenoidale, basiphenoidal bone                             |
| 36b      | Os occipitale, occipital bone                                     |
| 37       | Os temporalis, temporal bone                                      |
| 38       | Kiefergelenk, Temporomandibular joint                             |
| 39       | Nn. maxillaris, oculomotorius, trochlearis, abducens,             |
|          | opthalmicus; maxillary,oculomotor, trochlear, abducent and        |
|          | ophthalmic nerves                                                 |
| 40       | Radix linguae, lingual radix                                      |
| 41       | Apertura conchomaxillaris, conchomaxillary opening                |
| 42       | Apertura frontomaxillaris, frontomaxillary opening,               |
| 43       | Apertura nasomaxillaris, nasomaxillary opening                    |
| 44       | Retrorbitaler Fettkörper, retroorbital fat                        |
| 45       | Extraorbitaler Fettkörper, extraorbital fat                       |
| 46       | Sinus palatinus, palatinal sinus                                  |
| 46a      | Sinus sphenopalatinus, sphenopalatinal sinus                      |
| 46b      | Foramen sphenopalatinum, sphenopalatinal opening                  |
| 47       | Cerebrum, cerebrum                                                |
| 48       | Cerebellum, cerebellum                                            |
| 49       | Corpus callosum, corpus callosum                                  |
| 50       | Medulla oblongata, medulla oblongata                              |
| 51       | Hypophyse, pituitary gland                                        |
| 52       | Pons, pons                                                        |
| 53       | Bulbus olfactorius, olfactory bulb                                |
| 54       | Chiasma opticum, optic chiasm                                     |
| 55       | Processus pterygoideus, pterygoid process of the sphenoid         |
|          |                                                                   |
| <u>A</u> | M. genioglossus, genioglossal muscle                              |
| B        | M. hypoglossus, hypoglossal muscle                                |
|          | M. genionyolaeus, genionyolaeus muscle                            |
|          | A./V. protunda linguae, deep lingual artery and vein              |
|          | A., V., N. Manabularis, manabular anery, vein, herve              |
|          | Corpus inigua, iongue                                             |
| <u> </u> | M. dispetrieve dispetrie severale                                 |
| <u> </u> | In mandibulares, mandibular lumph pades                           |
|          | M. massatar massatar musclo                                       |
|          | Mm bussington bussington muscle                                   |
| <u> </u> | Min. bucchalors, bucchalors muscle                                |
|          | M. prerygoldeus medialis, medial prerygold muscle                 |
|          |                                                                   |
|          | M. parangoidous modialia modial                                   |
| <u>Р</u> | M. prerygolaeus mealais, mealaí<br>M. temporalis, temporal muscle |
| P        | M stangaidaus lataralis, lataral stangaid succe                   |
| <u></u>  | M. prerygolaeus ialeraris, ialerar prerygola muscle               |
| J        | superioris muscle and levator pasolabialis muscle                 |
|          | soperions muscle and reserver musclaning muscle                   |

### Literatur

Arenciba A., J. M. Vazquez, R. Jaber, F. Gil, J. A. Ramirez, M. Riviero, N. Gonzalez und E. R. Wisner (2000) Magnetic resonance imaging and cross sectional anatomy of the normal equine sinuses and nasal passages. Vet. Radiol. Ultrasound 41, 313-319

Arencibia A., J. M. Vazquez, J. A. Ramirez, G. Ramirez, J. M. Vilar, M. A. Rivero, S. Alayon und F. Gil (2001) Magnetic resonance imaging of the normal equine brain. Vet. Radiol. Ultrasound 42, 405-409

- Audigié F., J. Tapprest, C .George, D. Didierlaurent, N. Foucher, F. Faurie, M. Houssin und J.-M. Denoix (2004) Magnetic resonance imaging of a brain abscess in a 10-month-old filly. Vet. Radiol. Ultrasound 45, 210-215
- Budras K. D. und S. Röck (2000) Atlas der Anatomie des Pferdes. 4. Auflage Schlütersche, Hannover, 28-47
- Chaffin M. K., M. A. Walker, N. H. McArthur, E. E. Perris und N. S. Matthews (1997) Magnetic resonance imaging of the brain or normal neonatal foals. Veter. Radiol. Ultras. 38, 102-111
- *Ehlert A.* (2006) Röntgenanatomische und querschnittsanatomische Untersu-chungen unter Berücksichtigung magnetresonanztomographischer Befunde an der Hintergliedmaße des Rindes. Vet. Med. Diss. Leipzig
- Ferrell E. A., P. R. Gavin, R. L. Tucker, D. C. Sellon und M. T. Hikes (2002) Magnetic resonance imaging for evaluation of neurologic disease in 12 horses. Vet. Radiol. Ultrasound 43, 510-516
- Floyd M. R. (1991) The modified Triadan system: nomenclature for veterinary dentistry. J. Vet. Dent. 8, 18-19
- Gerlach K., D. Scharner, E. Ludewig und J. Ferguson (2004) The clinical application of MRI in the diagnosis of equine head lesions (abstract). Proc. EAVDI and ECVDI, 08.-11.09.2004, Ghent, Belgium, 59
- Gerlach K., D. Scharner, E. Ludewig und S. Reese (2006) Die Untersuchung von Zähnen des Pferdes im MRT: informativ oder überflüssig? 19. Arbeitstagung der FG "Pferdekrankheiten" der DVG, Hannover, ISBN 3-938026-67-7, ISSN 0936-8221, 231-234
- Gerlach, K., M. Cronau, R. McMullen, H. Gerhards (2007) Magnetresonanz-tomographische Untersuchungen von Melanomen im Kopfbereich bei drei Pferden. Pferdeheilkunde 23, 259-262
- Gerlach K. und H. Gerhards (2008) Magnetresonanztomographische Merkmale von Zubildungen im Bereich der Nase, Nasennebenhöhlen und der angrenzenden Knochen: retrospektive Analyse von 33 Pferden. Pferdeheilkunde 24, 565-576
- Junker C., T. Hoppe, W. Horstmann, H. Gerhards und K. Matiasek (2002) Magnetresonanz-tomographische Studien an Kopf und Hals des Pferdes mit Fallberichten. Pferdeheilkunde 18, 351-358
- König H. E., H.-G. Liebig und C. Cerveny (2002) Nervensystem. In: König, H. E., H.-G. Liebig Anatomie der Haussäugetiere: Lehrbuch und Farbatlas für Studium und Praxis. Bd. 2, 2. Auflage, Schattauer Stuttgart New York, 203-276
- Leigh E. J., E. Mackillop, I. D. Robertson und L. C. Hudson (2008) Clinical anatomy of the canine brain using magnetic resonance imaging. Vet. Radiol. Ultrasound 49, 113-121
- Lemke A. J. und G. Steiner (1999) Interpretation von MRT-Bildern. In: Hosten N., A. J. Lemke und R. Felix: Kernspintomographie. Ecomed Landsberg; 1-6
- Nickel R., A. Schummer und E. Seiferle (2004) Lehrbuch der Anatomie der Haustiere, Band 4, Nervensystem, Sinnesorgane, Endokrine Drüsen. Paul Parey Stuttgart, 62-472

- Mair T. S., J. Kinns, R. D. Jones und N. M. Bolas (2005) Magnetic resonance imaging of the distal limb of the standing horse. Equine Vet. Educ. 17, 74-78
- Matiasek K., M. Cronau, W. Schmahl und H. Gerhards (2007) Imaging Features and Decision Making in Retrobulbar Neuroendocrine Tumours in Horses – Case Report and Review of Literature. J. Vet. Med. 54, 302-306
- Nöller C., M. Nowak, J. Hartmann, G. Fritsch und K. D. Budras (2007) Klinische Anatomie der Nasen- und Nasennebenhöhlen des Pferdes - Grundlagen für die Endoskopie, Computertomographie und Chirurgie. Pferdeheilkunde 23, 47-58
- Olson L. G. und K. P. Strohl (1987) The response of the nasal airway to exercise. Am. Rev. Respirat. Dis. 135, 356-359
- Popesko P. (1989) Atlas der topographischen Anatomie der Haustiere, 5. Auflage Enke Stuttgart, 111-159
- Probst A., W. Henninger und M. William (2005) Communications of normal nasal and paranasal cavities in computed tomography of horses. Vet. Radiol. Ultrasound 46, 44-48
- Pekarkova M. (2008) MRI of the upper airways in sound horses and a case of lymphoma in the pharyngeal region. 4th European Veterinary MRI-user meeting, Merelbeke, Belgium, 16-17th May 2008
- Staszyk C., A. Bienert, K. Feige und H. Gasse (2008) Simulation of local anaesthetic nerve block of the infraorbital nerve within the pterygopalatine fossa: Anatomical landmarks defined by computed tomography. doi:10.1016/j.rvsc.2008.02.008
- *Schaller O*. (2007) Illustrated Veterinary Anatomical Nomenclature. 2. Ausgabe, Enke Stuttgart
- Tremaine W. H. und P. M. Dixon (2002) Diseases of the Nasal Cacities and paranasal sinuses. In: Lekeux, P. (Ed.): Equine respiratory diseases. International Veterinary Information Service, Ithaca NY (www.ivis.org), 2002; B0312.0302
- Tucker R. L. und E. Farrell (2001) Computed Tomography and Magnetic Resonance Imaging of the Equine Head. In: Modern Diagnostic Imaging. Vet. Clin. North Amer. Equine Practice 17, 131-143
- Vogl T. J. und T. Diebold (1999) Herz und Gefäße. In: In: Hosten N., A. J. Lemke und R. Felix: Kernspintomographie. Ecomed Landsberg; III-3.1, 1-12
- Wollanke B., H. Gerhards und M. Cronau (2006) Diagnostik und Therapie periorbitaler Erkrankungen von Pferden: Wann ist eine Computertomographie (CT) oder einer Magnetresonanztomographie (MRT) indiziert? Pferdeheilkunde 22, 431-438

Dr. Kerstin Gerlach Chirurgische Tierklinik der Universität Leipzig An den Tierkliniken 21 04299 Leipzig gerlach@vetmed.uni-leipzig.de